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Abstract

Background: Despite evidence suggesting that air pollution-related health effects differ by 

emissions source, epidemiologic studies on fine particulate matter (PM2.5) infrequently 

differentiate between particles from different sources. Those that do rarely account for the 

uncertainty of source apportionment methods.

Methods: For each day in a 12-year period (1998 to 2010) in Atlanta, GA, we estimated daily 

PM2.5 source contributions from a Bayesian ensemble model that combined four source 

apportionment methods including chemical transport and receptor-based models. We fit Poisson 

generalized linear models to estimate associations between source-specific PM2.5 concentrations 

and cardiorespiratory emergency department visits (n=1,598,117). We propagated uncertainty in 

the source contribution estimates through analyses using multiple imputation.

Results: Respiratory emergency department visits were positively associated with biomass 

burning and secondary organic carbon. For a 1 μg/m3 increase in PM2.5 from biomass burning 

during the past 3 days, the rate of visits for all respiratory outcomes increased by 0.4% (95% CI 

0.0%, 0.7%). There was less evidence for associations between PM2.5 sources and cardiovascular 
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outcomes, with the exception of ischemic stroke, which was positively associated with most PM2.5 

sources. Accounting for the uncertainty of source apportionment estimates resulted, on average, in 

an 18% increase in the standard error for rate ratio estimates for all respiratory and cardiovascular 

emergency department visits, but inflation varied across specific sources and outcomes, ranging 

from 2% to 39%.

Conclusions: This study provides evidence of associations between PM2.5 sources and some 

cardiorespiratory outcomes and quantifies the impact of accounting for variability in source 

apportionment approaches.
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INTRODUCTION

Fine particulate matter (PM2.5) is a mixture of aerosols from heterogeneous sources such as 

biomass burning, gasoline-fueled vehicles, coal combustion, and atmospheric reactions. 

Despite evidence suggesting that the health effects of PM2.5 may vary depending on 

pollutant source,1-5 the vast majority of epidemiologic studies on PM2.5 do not differentiate 

between particles from different sources.

While we cannot directly identify the sources of particles using ambient pollutant monitors, 

we can use models to relate ambient PM2.5 back to its sources (i.e. emissions-based 

chemical transport models and receptor-based models). However, there is no gold standard 

method of source apportionment; different studies have applied different methods, all of 

which have limitations and source uncertainties. Even though uncertainty estimates are 

available for different methods, they are rarely accounted for in health studies of source-

apportioned PM2.5, which may underestimate the uncertainty of the resulting health 

associations of PM2.5 sources.6

One approach for estimating the mass contribution from specific PM2.5 sources is to 

combine the concentrations from several source apportionment methods. Compared to using 

only one source apportionment technique, ensemble averaging has been found to reduce 

variability in source attribution estimates, improve fit statistics,7 and provide uncertainty 

estimates for comparison across methods.8 In 2013, Balachandran and colleagues 

implemented a Bayesian-based ensemble source apportionment method for PM2.5 using 

three receptor-based source apportionment models and one chemical transport model.9 

Rather than providing a single estimate of source concentration for each day, their method 

resulted in a distribution of daily source-specific PM2.5 concentrations reflecting the source-

specific uncertainty in the PM estimate on that day. This uncertainty can be propagated into 

the uncertainty estimates of the health associations in epidemiologic analyses. In 2015, Gass 

and colleagues used such an approach to estimate associations between ensemble-based 

PM2.5 source contributions and pediatric asthma emergency department visits.1 In this study, 

we extend the Gass et al. work to estimate associations between source-apportioned PM2.5 

concentrations and all-ages emergency department visits for a range of cardiovascular and 
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respiratory outcomes in Atlanta, Georgia during the period from 1 August 1998 to 23 

December 2010.

METHODS

Data sources

Daily counts of emergency department visits, aggregated from individual-level data, with 

billing zip codes in the five-county (DeKalb, Clayton, Cobb, Fulton, Gwinnett) Atlanta 

metropolitan area for 1 August 1998 to 23 December 2010 (4,528 days of data) were created 

for the following health outcomes: asthma and wheeze, chronic obstructive pulmonary 

disease (COPD), pneumonia, upper respiratory infection, ischemic heart disease, 

dysrhythmia, congestive heart failure, ischemic stroke, as well as for combinations of these 

respiratory disease and cardiovascular disease outcomes. Outcomes were identified via 

ICD-9 codes (Table 1) listed as the primary reason for the emergency department visit. 

These data were collected from individual hospitals and the Georgia Hospital Association as 

part of the Study of Particles and Health in Atlanta (SOPHIA)10-12 and capture over 90% of 

visits for the area. Emory University’s Institutional Review Board approved this study.

We used daily measurements of pollutant gases (SO2, CO, and NOX), total PM2.5 and PM2.5 

components (major ions, carbon fractions, and trace metals) from the Jefferson Street 

monitor in midtown Atlanta13 for long-term PM2.5 source apportionment. Daily Bayesian 

ensemble source-apportioned PM2.5 concentration estimates at Jefferson Street were 

available for 1 August 1998 to 23 December 2010 for five primary PM2.5 sources: biomass 

burning, primary coal combustion, dust/resuspended soil, diesel-fueled vehicles and non-

road engines, and gasoline-fueled vehicles and engine sources; and one secondary source: 

secondary organic carbon. Ammonium sulfate, ammonium bisulfate, and ammonium nitrate 

are derived directly from the monitor measurements and were not examined because our 

focus was on chemical mass balance-derived PM2.5 sources and the uncertainty inherent in 

quantifying source concentrations that cannot be directly measured. Organic carbon (OC) 

that is not attributed to one of the source categories above is expected to be largely 

secondary OC and is included to demonstrate the impact of separating the OC into different 

sources. The methodology for Bayesian-based ensemble source apportionment is described 

in detail elsewhere1,9 and summarized below.

We estimated distributions of speciated PM2.5 emissions distributions of two seasonal sets of 

ensemble-trained source profiles using Bayesian ensemble averaging, three receptor-based 

source apportionment methods (chemical mass balance with organic molecular markers, 

chemical mass balance with gas-based constraints, and positive matrix factorization),14-16 

and one chemical transport model (Community Multiscale Air Quality [CMAQ]).17 We 

conducted the ensemble averaging and source profile estimation for 2 months representing 

summer and winter. These profiles are then used to estimate long-term PM2.5 source impacts 

and uncertainties as measured by the root mean square error (RMSE) between each 

method’s estimated source concentration and the average source concentration across 

methods (the ensemble average) using a Monte Carlo framework. An estimate of uncertainty 

for each source apportionment method for each source concentration for each day was 

calculated using a Bayesian framework accounting for the uncertainties in the RMSEs 
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themselves. Our approach is to describe uncertainties in source concentration estimates 

using posterior distributions derived from a data likelihood that assumes estimates from 

individual methods are normally distributed around the ensemble mean. To estimate daily 

source concentrations for use in this epidemiologic analysis, we sampled the seasonal source 

profiles 10 times for each day in the time series, and calculated deterministically 10 separate 

time series of daily source-apportioned PM2.5 concentrations from these realizations using 

the chemical mass balance with gas constraints approach. We present the correlations 

between PM2.5 source concentrations and specific PM2.5 compounds (tracers) commonly 

used in PM2.5 source apportionment in each technique and sometimes analyzed directly in 

relation to health outcomes.5,18-20

Statistical Analysis

We used Poisson log-linear models, with unconstrained distributed lags that accounted for 

overdispersion, to estimate associations between cumulative lag 0–2 (same day and 2 

previous days) exposure to PM2.5 sources and respiratory emergency department visits, and 

lag 0 (same day) exposure to PM2.5 sources and cardiovascular visits. A priori we chose 

shorter lags for cardiovascular outcomes based on past evidence that the impact of pollution 

is more acute for these outcomes21,22 than for respiratory outcomes.12,23 Rate ratios were 

calculated by exponentiating the sum of the betas for the source of interest (3 betas for 

respiratory models (RR0–2 = exp(βlag 0+βlag 1+ βlag 2)) and 1 beta for cardiovascular models 

(RR0 = exp(βlag 0))). The covariance matrix from the genmod procedure in SAS was used to 

calculate standard errors (SAS Institute Inc., Cary, NC). Rate ratios for lag 0–2 exposure 

estimate the impact of a cumulative 1 μg/m3 increase of PM2.5 source concentration on all 3 

days; rate ratios for lag 0 exposure estimate the impact of only a same day 1 μg/m3 increase. 

As a sensitivity analysis, we also calculated the association between lag 0–7 exposure to 

PM2.5 sources and respiratory emergency department visits.

To control for temporal and meteorologic factors all models included parametric cubic 

splines with monthly knots,24 cubic polynomials on lag 0 maximum temperature, interaction 

between lag 0 maximum temperature and season, cubic polynomials for the 2-day (lags 1– 

2) moving average of minimum temperature, cubic polynomials for lag 0 dewpoint, an 

indicator for each hospital taking the value 1 if the hospital contributes on a given day and 0 

if the hospital does not contribute, an indicator representing season of emergency department 

visits (December–February [winter], March–May [spring], June–August [summer], 

September–November [autumn]), and indicators for day of week and holidays and their 

interaction with season.25 We first estimated associations for each source and each outcome 

group, and then fit models that included all sources to control for potential confounding by 

other sources. For respiratory outcomes we also examined models adjusting for ozone due to 

previous findings of associations between ozone and respiratory outcomes.26,27

We fit ten models for each source–outcome combination, one for each of the 10 time series 

of daily source-apportioned PM2.5 concentrations. The combined point estimate was 

calculated as an average of the 10 point estimates from the models. Imputation-corrected 

variance was calculated to incorporate the average variance from the ensemble runs and 

variance between ensemble run coefficients using the method presented by Rubin28 and 
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described in more detail by Gass1. To quantify the increase in variance attributable to source 

method uncertainty, we calculated ratios of the imputation-corrected standard errors to the 

average standard error from the 10 model runs. To compare the results for specific sources to 

associations obtained for total PM2.5 mass, we also fit one model for each outcome with the 

exposure of total PM2.5 using the same lag structure and covariate control as for the source 

concentrations models.

We performed sensitivity analyses for select models based on our primary analysis results. 

We examined associations between GV and respiratory outcomes stratified by season. For 

models of BURN, we completed analyses to evaluate the extent to which days with extreme 

PM2.5 levels (days above 25 μg/m3 [88th percentile]) were driving the analysis. Because 

some previous analyses have used PM2.5 tracer species as indicators of sources instead of 

source apportionment models, we also examined adjusting for measured gasoline vehicle 

tracers from the monitor instead of model-based gasoline vehicle source concentrations 

estimated from the source apportionment in the all-sources model. All analyses were 

completed in SAS 9.4 (SAS Institute Inc., Cary, NC).

RESULTS

Over the 4,528 day time series, there was an average of 286 respiratory outcome emergency 

department visits and 67 cardiovascular outcome emergency department visits per day 

(Table 1). The individual outcome with the highest number of visits was upper respiratory 

infections, with an average of 163 visits per day, constituting over half of the all respiratory 

outcome group.

Due to missing data on source concentrations (due to incomplete PM2.5 speciation on those 

days), PM2.5, and meteorologic variables, 3,531 days of data were used in respiratory 

models and 4,060 days of data were used in cardiovascular models. Fewer days were 

available for respiratory outcomes because they required non-missing source concentrations 

for 3 days (lag 0, lag 1, lag 2), whereas cardiovascular outcomes only required 

concentrations for 1 day (lag 0).

Figure 1 shows the average proportion of total PM2.5 mass contributed by each source and 

other measured components. The sources examined in this analysis make up 45 percent of 

total PM2.5 mass; of these, the largest contributors in terms of mass were biomass burning 

(daily average of 2.74 μg/m3) and secondary organic carbon (1.73 μg/m3) and the smallest 

was primary coal combustion (0.10 μg/m3). It should be noted that the “other” in Figure 1 is 

likely substantially the oxygen (and some hydrogen, nitrogen, and sulfur) in secondary 

organic matter. Descriptive statistics for the source-specific PM2.5 concentrations are shown 

in Table 2. Within source, there were high correlations (rs>0.7) between estimates in the 10 

ensemble datasets (Table 2). Between sources, correlation was highest between diesel 

vehicles and non-road engines and secondary OC (rs=0.41) and between biomass burning 

and gasoline vehicles and engines (rs=0.39) (Table 3). Correlations between sources and 

tracers are provided in eTable 1.
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Figure 2 presents associations between source concentrations and emergency department 

visits, with numeric results included in eTable 2. We note that the magnitude of a 1 μg/m3 

increase relative to each source’s mass contribution differs markedly between sources. For 

example, for biomass burning, with the largest mass contribution, a 1 μg/m3 increase 

represents 38% of its standard deviation, but for coal combustion a 1 μg/m3 represents 725% 

of its standard deviation. Further, the interpretation of estimates differs for respiratory and 

cardiovascular outcomes due to the use of different lag structures (lag 0–2 for respiratory 

outcomes and lag 0 for cardiovascular outcomes).

Emergency department visits for respiratory outcomes were consistently and positively 

associated with biomass burning (Figure 2). For example, for a 1 μg/m3 increase in biomass 

burning for lags 0–2 the rate of emergency department visits for all respiratory outcomes 

combined increased 0.4% (95% CI 0.0%, 0.7%) in the single-source model and 0.8% (95% 

CI 0.4%, 1.1%) when adjusting for other sources. Consistent positive associations across 

respiratory outcomes were also observed for secondary OC. Among the respiratory 

outcomes, association estimates were the most uncertain for COPD due to the small number 

of emergency department visits (an average of 12 per day). Rate ratios for the association 

between gasoline vehicle source emissions and respiratory outcomes were generally below 

the null in single-source models and further below the null when adjusting for other sources. 

Results for the associations between lag 0–7 PM2.5 sources and respiratory emergency 

department visits are provided in eTable 3 and show similar patterns but wider confidence 

intervals. Respiratory model results were similar when adjusting for ozone (results not 

shown).

Compared to respiratory outcomes, we observed less evidence of associations between 

PM2.5 source concentrations and cardiovascular outcomes. One exception was elevated rate 

ratios for the association between several PM2.5 sources and ischemic stroke. For example, 

the rate ratio for the association between an increase of 1 μg/m3 in same-day diesel vehicle 

emissions and ischemic stroke was 1.013 (95% CI 1.001, 1.025) in single-source models, 

and 1.009 (95% CI 0.995, 1.023) when adjusting for other sources. Rate ratios were elevated 

for associations between secondary OC and cardiovascular outcomes, but with less evidence 

of an association than between secondary OC and respiratory outcomes.

For the same mass concentrations (1 μg/m3), the magnitude of associations between total 

PM2.5 and respiratory and cardiovascular outcomes were smaller than for PM2.5 sources. We 

observed positive associations between total PM2.5 and asthma and wheeze (RR (95% CI): 

1.001 (1.000, 1.002) per 1 μg/m3), upper respiratory infections (RR (95% CI): 1.001 (1.000, 

1.002)), and the combined respiratory outcome group (RR (95% CI): 1.001 (1.000, 1.002)) 

(Figure 3). We also observed a positive association between total PM2.5 and ischemic stroke 

(RR (95% CI) 1.002 (1.000, 1.003)) (Figure 3). Results were more consistent with no 

association for other cardiovascular outcomes.

The impact on standard errors due to accounting for the uncertainty in PM2.5 source 

apportionment techniques through multiple imputation varied notably across sources (Table 

4). Across all sources, for all respiratory and cardiovascular emergency department visits, 

the average increase in SE was 18%. Accounting for this uncertainty had the smallest impact 
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on associations with dust emission sources, where the SE increased 2.8% for the all 

respiratory outcome and 2.0% for the all cardiovascular outcome. The greatest increase in 

SE when accounting for between model uncertainty was seen for biomass burning and 

secondary OC reflecting more variability across methods in the estimated source 

concentrations and resulting health effect estimates from the different source apportionment 

methods (increase in SE for all respiratory emergency department visits 34.1% for biomass 

burning and 38.7% for secondary OC). When grouping outcomes, the relative inflation of 

the standard error was generally larger for all respiratory outcomes than for all 

cardiovascular outcomes, but this pattern was not seen within disease subgroups (eTable 4).

For coal combustion, dust, diesel vehicle, and secondary OC sources, results from single-

source and all-source models were similar. For biomass burning, adjusting for other PM2.5 

sources increased rate ratios for respiratory outcomes compared to results from single-source 

models. The opposite was true for gasoline vehicles where adjusting for other sources 

resulted in smaller rate ratios for respiratory outcomes than the already below the null rate 

ratios from single-source models. Inclusion of biomass burning and gasoline vehicles in the 

same model drove the higher estimates for biomass burning and the lower estimates for 

gasoline vehicles. Analyses stratified by season showed that this sensitivity of results based 

on inclusion of biomass burning and gasoline vehicles together was most pronounced during 

winter and autumn. We explored adjusting for zinc, a tracer of gasoline vehicle sources 

(eTable 1), in biomass burning models and observed similar results, i.e., that in comparison 

to single-source models point estimates for biomass burning increased and zinc estimates 

decreased. Additional analyses on single-source biomass burning models showed that high-

PM days (days above 25 μg/m3) were not driving the biomass burning associations (the RR 

for all respiratory outcomes was unchanged when excluding 384 days where PM2.5 is more 

than 25).

DISCUSSION

Due to the relevance of examining PM2.5 source impacts for regulation, examining impacts 

by source is of interest6, but the uncertainty of source apportionment methods is rarely 

accounted for in the epidemiologic analysis. In this 12-year time series, we applied four 

source apportionment approaches to obtain uncertainty distributions of daily source specific 

PM2.5 concentrations, with wider distributions on days where the source apportionment 

methods showed more disagreement. We then used these source-specific PM2.5 

concentration estimates in epidemiologic analyses that propagated the uncertainty of the 

source apportionment techniques. Our results allow direct comparison of the associations of 

1 μg/m3 of PM2.5 from different sources. They provide evidence for associations between 

some respiratory outcomes and biomass burning and secondary organic carbon source 

concentrations in the past 3 days and respiratory outcomes, and associations between several 

PM2.5 sources and ischemic stroke on the same day. Compared to an approach not 

accounting for the variability between source apportionment methods, our approach widened 

confidence intervals around point estimates, more accurately representing the uncertainty in 

these model-based approaches to source apportionment.
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A contribution of this approach is to add to our insight regarding the possible impacts of 

different source apportionment techniques on associations between PM2.5 sources and health 

outcomes. The ensemble approach accounts for the fact that there is no preferred source 

apportionment technique. The variability in estimated health associations between the four 

source apportionment methods that we used is directly incorporated into our results. 

Accounting for this uncertainty results in a more accurate estimate of the true uncertainty in 

PM2.5 source-specific health effects. Previous studies have compared associations based on 

different source apportionment approaches,5 but to our knowledge, there is only one other 

method presented in the literature that has a formal incorporation of uncertainty from 

multiple source apportionment techniques in health models. The other method, presented by 

Kioumourtzoglou and colleagues, uses a block bootstrapping approach to combine analyses 

with inputs from two receptor-based source apportionment methods (both factor-analytic 

approaches).29 Our approach differs from theirs in our accounting for between-method 

uncertainty and the broader range of source apportionment methods combined in our 

ensemble, which include two chemical mass balance approaches (utilizing empirically 

derived source profiles), one factor analytic approach, and an emissions-based chemical 

transport model.

In this analysis, we propagated the uncertainty in daily estimated source concentration 

attributable to source apportionment technique through the epidemiologic models by repeat 

sampling (10 imputations) from a distribution of source concentrations on each day. When 

there was more disagreement among methods about source concentration on a given day, 

that sampling distribution had a higher variance, and when there was less disagreement 

among methods, that distribution had lower variance. The amount of added uncertainty in 

the estimated associations (shown in Table 4, eTable 4) due to accounting for this variability 

between source apportionment techniques varied by source because the source 

apportionment methods agreed more for some sources than others. For example, for dust and 

resuspended soil there was high correlation between estimates between the different 

ensemble runs (Spearman’s rs=0.976, Table 2) reflecting strong agreement between the 

source apportionment techniques. This high correlation translated to little additional 

uncertainty when accounting for variability between the health effect estimates, with an 

inflation of the standard error of approximately 2% for all respiratory outcomes and all 

cardiovascular outcomes (Table 4). For other sources there was less agreement in daily 

source concentrations between the ensemble estimates, which in turn led to more uncertainty 

and higher standard errors. For example, for biomass burning the Spearman correlation 

between ensemble runs was 0.747 (Table 2), and accounting for the variability between point 

estimates increased the standard error by 34% for all respiratory outcomes and 16% for all 

cardiovascular outcomes (Table 4). The average inflation in standard errors shown in Table 4 

was 18%. Differences in variance inflation by outcome (for a given source) could be 

explained by differences in sample size between outcomes, with smaller case groups having 

larger standard errors to begin with and thus smaller relative increase due to the added 

uncertainty. Additionally, differential impacts on precision by outcome may reflect 

differences in associations between each source apportionment method and outcome; for 

example, if the individual source apportionment methods all yielded identical associations 
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with an outcome, then variability in the ensemble weighting across methods should not 

inflate the standard errors for this outcome.

Our approach accounts for uncertainty from using an ensemble of source apportionment 

methods, but does not account for the uncertainty due to exposure measurement error of the 

pollution components themselves. We used measurements from a single monitoring site for 

all receptor-based methods, which is not representative of PM for spatially heterogeneous 

sources. As a result, the measurement error could differ by source in our analysis. 

Associations of outcomes with sources with more spatial homogeneity (e.g. SOC) may be 

more strongly detected due to less spatial error in exposure estimates. We note that one of 

the four source apportionment approaches is emissions-based, and thus would be less 

affected by measurement error at the monitors. These limitations apply to all of our results 

regardless of direction and magnitude of association.

Results from this study add to the growing evidence that biomass burning is of interest for 

respiratory health. Examining the association between biomass burning and respiratory 

disease emergency department visits in four U.S. cities, Krall and colleagues observed 

elevated relative risks for lag 0 to lag 3 exposure in many of the cities with magnitudes that 

were often larger than those of the other sources examined.2 Ostro and colleagues 

demonstrated an excess risk of respiratory disease emergency department visits in California 

with lag 0 and lag 1 biomass burning, but not with lag 2.3 Additional time series studies have 

observed elevated rate ratios between biomass burning and respiratory disease and pediatric 

asthma visits in Atlanta, but provide less evidence of an association.1,5 There are also studies 

emerging suggesting that wildfire smoke, one type of biomass burning, is particularly 

harmful for respiratory disease.30 We scaled results for all sources, and total PM2.5 mass, to 

a 1 μg/m3 increase despite variable distributions for each source concentration. Our results 

suggest that for all respiratory outcomes the per unit impact of biomass burning is more 

harmful than the per unit impact of total PM2.5 (RR (95% CI) 1.004 (1.000, 1.007), 1.001 

(1.000, 1.002) respectively). Primary coal combustion and dust/resuspended soil were 

relatively small contributors to the total PM2.5 concentration (contributing 0.9% and 2.4% 

respectively) resulting in high levels of uncertainty in estimates per 1 μg/m3 increase. 

Variability in mass due to these sources may be dwarfed by the larger contributors to PM2.5. 

We note that correlations between the sources we examined and the other major contributors 

to PM2.5 (ammonium sulfate, ammonium bisulfate, and ammonium nitrate) were low, 

suggesting that these other PM2.5 components excluded from the “all source” models are 

unlikely to be confounders of the observed associations. With the exception of associations 

between several sources and ischemic stroke, we observed little evidence of associations 

between same-day PM2.5 source concentrations and cardiovascular disease outcomes.

The observed below the null rate ratios for the association between gasoline-fueled vehicles 

and respiratory outcomes were unexpected; these associations were furthest below the null 

when adjusting for biomass burning, the source with which gasoline-fueled vehicles was 

most highly correlated (rs=0.39). Results were similar from models including elemental zinc 

instead of gasoline-fueled vehicles, which was highly correlated with the ensemble average 

of gasoline-fueled vehicles (rs=0.8) and is a tracer of tailpipe emissions. Winter and autumn 

were the seasons where adjusting for biomass burning had the most impact on gasoline-
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fueled vehicle results. During these seasons gasoline fueled vehicle contributions are high 

(due to mixing height and weather influences) and there may be overlap of gasoline-fueled 

vehicle and biomass burning source impact estimates, which may partially explain these 

results. Additionally, since there is substantial anthropogenic organic carbon associated with 

both gasoline-fueled vehicle and biomass burning sources, they may be more difficult to 

differentiate as cleanly as other sources. With the exception of associations with ischemic 

stroke, and to some degree asthma for diesel-fueled vehicles, we observed little evidence of 

associations between mobile source PM2.5 (diesel-fueled vehicles and gasoline-fueled 

vehicles) and emergency department visits. Evidence on the health effects of these sources 

from previous studies is inconsistent with some evidence suggesting associations with 

cardiovascular and respiratory emergency department visits, while others’ results have been 

less convincing.1-3,5

In this 12-year time series we used concentration estimates from four source apportionment 

methods to estimate associations between PM2.5 source concentrations and respiratory and 

cardiovascular emergency department visits in Atlanta. Our uncertainty propagation analytic 

framework allowed us to account for variability between source apportionment methods and 

to take into account the uncertainty of each method when determining the weighting in the 

ensemble averaging. Our results indicate potential associations between biomass burning 

and respiratory outcomes and between a number of sources and ischemic stroke.
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Figure 1. 
Contribution of sources to PM2.5 mass (averaged across the study period) [Abbreviations: 

BURN, biomass burning; COAL, primary coal combustion; DUST, dust/resuspended soil; 

DV, diesel-fueled vehicles; GV, gasoline-fueled vehicles; SOC, secondary organic carbon; 

(NH4)2SO4, ammonium sulfate; NH4HSO4, ammonium bisulfate; NH4NO3, ammonium 

nitrate; PM2.5, fine particulate matter]
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Figure 2. 
Rate ratios for 1 μg/m3 increase in source specific PM2.5 with emergency department visits: 

lag 0-2 for respiratory outcomes and lag 0 for cardiovascular disease (CVD) outcomes, 

results from single- and all-sources models
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Figure 3. 
Rate ratios for 1 μg/m3 increase in PM2.5 with emergency department visits: lag 0-2 for 

respiratory outcomes and lag 0 for cardiovascular disease (CVD) outcomes
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Table 1.

ICD-9 codes and summary statistics of emergency department visits for respiratory and cardiovascular 

outcomes. SD indicates standard deviation.

Outcome ICD-9 codes
[only primary codes used]

Visits per day

Minimum Mean (SD) Maximum

Respiratory

All respiratory 460-465, 466.0, 477, 480-486, 491-492, 493, 466.1, 
466.11, 466.19, 496, 786.07 86 286.0 (102.8) 763

Asthma and wheeze 493, 786.07 13 64.7 (25.2) 191

Chronic obstructive pulmonary disease 491-492, 496 1 12.4 (5.2) 37

Pneumonia 480-486 6 35.7 (15.2) 108

Upper respiratory infection 460-465, 466.0, 477 44 162.5 (62.5) 467

Cardiovascular

All cardiovascular 410-414, 427, 428, 433-437, 440, 443-445, 447 20 66.9 (18.7) 129

Ischemic heart disease 410-414 3 18.0 (5.4) 40

Dysrhythmia 427 3 17.2 (5.6) 40

Congestive heart failure 428 1 17.6 (7.8) 51

Ischemic stroke 433-437 0 12.8 (5.0) 34
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Table 2.

Summary statistics for source-specific PM2.5 concentrations, Atlanta, Georgia, August 1, 1998 - December 23, 

2010
a

Source
Minimum

μg/m3
Median
μg/m3

Mean
μg/m3

Maximum
μg/m3

Standard
deviation

Interquartile
range width

Correlation
between
ensemble

runs 
b

Biomass burning 0.000 (0.000) 1.877(0.019) 2.737(0.012) 32.103(5.933) 2.642(0.051) 2.689(0.030) 0.747

Primary coal combustion 0.000 (0.000) 0.097(0.001) 0.134(0.002) 1.687(0.273) 0.138(0.003) 0.138(0.002) 0.722

Dust/resuspended soil 0.000 (0.000) 0.250(0.001) 0.373(0.001) 9.378(1.562) 0.474(0.010) 0.248(0.002) 0.976

Diesel vehicles 0.000 (0.000) 0.883(0.012) 1.142(0.009) 12.343(1.259) 1.089(0.020) 1.091(0.015) 0.741

Gasoline vehicles 0.008 (0.009) 0.694(0.010) 0.858(0.004) 10.534(0.884) 0.759(0.007) 0.706(0.009) 0.783

Secondary organic carbon 0.000 (0.000) 1.453(0.012) 1.727(0.007) 27.578(1.071) 1.681(0.011) 2.097(0.032) 0.745

Results presented as mean(standard deviation)

a
Averaged across 10 ensemble runs.

b
Mean Spearman correlation calculated from all pairwise runs

For comparison, the distribution of total PM2.5, in μg/m, is: minimum 1.060, median 13.970, mean 15.473, maximum 72.560, standard deviation 

7.936, interquartile range 9.915.
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Table 3.

Spearman correlation coefficients between source-specific PM2.5 and total PM2.5 concentrations (averaged 

across 10 ensemble runs).

Pollutant BURN COAL DUST DV GV SOC PM2.5

BURN 1.00

COAL 0.24 1.00

DUST -0.04 0.15 1.00

DV 0.06 0.23 0.23 1.00

GV 0.39 0.09 0.12 0.23 1.00

SOC -0.44 0.04 0.30 0.41 -0.09 1.00

PM2.5 0.18 0.23 0.40 0.46 0.33 0.47 1.00

Abbreviations: BURN, biomass burning; COAL, primary coal combustion; DUST, dust/resuspended soil; DV, diesel-fueled vehicles; GV, gasoline-
fueled vehicles; SOC, secondary organic carbon; PM2.5, fine particulate matter.
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Table 4.

Ratios of the imputation-corrected SE (that accounts for between imputation uncertainty) to the average SE 

from the ensemble runs from single-source models for all respiratory and all cardiovascular ED visits

Inflation of SE

Source All respiratory All cardiovascular

Biomass burning 1.341 1.164

Primary coal combustion 1.206 1.260

Dust/resuspended soil 1.028 1.020

Diesel-fueled vehicles 1.333 1.112

Gasoline-fueled vehicles 1.248 1.068

Secondary organic carbon 1.387 1.044

SE = standard error. ED = emergency department. Inflation of SE calculated as the SE accounting for both between- and within-model uncertainty 
divided by the average of the SEs from the 10 models for each source-outcome combination (SE accounting for only within-model uncertainty).
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